On the functional equation $f\sp{2}=e\sp{2\phi\sb{1}}+e\sp{2\phi\sb{2}}+e\sp{2\phi\sb{3}}\ $ and a new Picard theorem
نویسندگان
چکیده
منابع مشابه
the effect of functional/notional approach on the proficiency level of efl learners and its evaluation through functional test
in fact, this study focused on the following questions: 1. is there any difference between the effect of functional/notional approach and the structural approaches to language teaching on the proficiency test of efl learners? 2. can a rather innovative language test referred to as "functional test" ge devised so so to measure the proficiency test of efl learners, and thus be as much reliable an...
15 صفحه اولOn a Theorem of Picard
We extend Picard's theorem on the existence of elliptic solutions of the second kind of linear homogeneous n th-order scalar ordinary diierential equations with coeecients being elliptic functions (associated with a common period lattice) to linear homogeneous rst-order n n systems. In particular, the qualitative structure of the general solution in terms of elliptic and exponential functions, ...
متن کاملon the comparison of keyword and semantic-context methods of learning new vocabulary meaning
the rationale behind the present study is that particular learning strategies produce more effective results when applied together. the present study tried to investigate the efficiency of the semantic-context strategy alone with a technique called, keyword method. to clarify the point, the current study seeked to find answer to the following question: are the keyword and semantic-context metho...
15 صفحه اولOn a new type of stability of a radical cubic functional equation related to Jensen mapping
The aim of this paper is to introduce and solve the radical cubic functional equation $fleft(sqrt[3]{x^{3}+y^{3}}right)+fleft(sqrt[3]{x^{3}-y^{3}}right)=2f(x)$. We also investigate some stability and hyperstability results for the considered equation in 2-Banach spaces.
متن کاملA new proof for the Banach-Zarecki theorem: A light on integrability and continuity
To demonstrate more visibly the close relation between thecontinuity and integrability, a new proof for the Banach-Zareckitheorem is presented on the basis of the Radon-Nikodym theoremwhich emphasizes on measure-type properties of the Lebesgueintegral. The Banach-Zarecki theorem says that a real-valuedfunction $F$ is absolutely continuous on a finite closed intervalif and only if it is continuo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 1974
ISSN: 0002-9947
DOI: 10.1090/s0002-9947-1974-0348112-4